一种带电磁防护功能的输电线路带电作业机器人控制系统的制作方法

专利查询2022-12-24  145



1.本发明涉及输电线路带电作业技术领域,具体涉及一种带电磁防护功能的输电线路带电作业机器人控制系统。


背景技术:

2.随着科学技术进步,电网智能化水平不断提高,为减少人工带电作业事故的发生,提高带电作业的检修效率,输电线路带电作业机器人成为了目前世界各国的研究热点。输电线路处于强电磁环境下,且电磁场环境复杂,而输电线路带电作业机器人自身存在许多电磁敏感元件。如果未对机器人进行电磁防护设计,机器人将无法正常工作,因此对输电线路带电作业机器人进行电磁分析与防护设计是保证机器人可靠工作的必要条件。
3.输电线路带电作业机器人在实际工作过程中容易出现空气击穿、通讯中断、控制系统死机等情况,严重影响了带电作业机器人的安全可靠性。现有的输电线路带电作业机器人利用机箱的屏蔽作用来限制工频电磁场,使进入箱体内的工频电磁场低于安全标准。但输电线路还包含有频带很宽的高频电磁场,仅仅依靠对控制机箱进行电磁防护设计也能屏蔽一部分,但仍会有一些电磁场进入箱体内,难以确保机器人的正常作业,因此有必要对带电作业机器人控制系统进行电磁防护设计,以进一步提高机器人抗干扰能力。


技术实现要素:

4.本发明的目的在于克服上述技术不足,提供一种带电磁防护功能的输电线路带电作业机器人控制系统,解决现有技术中输电线路带电作业机器人抗干扰能力不强的技术问题。
5.为达到上述技术目的,本发明采取了以下技术方案:
6.一种带电磁防护功能的输电线路带电作业机器人控制系统,包括集成在pcb板上的控制器、电源模块和通信模块,所述pcb板上开设有通信接口、模拟输入输出接口和数字输入输出接口,
7.所述控制器位于所述pcb板的中央,所述电源模块、通信接口、模拟输入输出接口和数字输入输出接口分别设置于所述控制器不同的侧边处,所述pcb板上不兼容的信号线连接的地线不同;
8.所述电源模块的各个电压输出端连接有电源滤波器,所述电源滤波器用于吸收电源启动时产生的电磁干扰;
9.所述can模块具有抗干扰的can总线以及无线网桥;
10.所述控制器中设置有软件防护系统,所述软件防护系统用于监测控制系统的硬件状态和通信状态、并对输入的模拟信号进行处理。
11.优选的,所述的带电磁防护功能的输电线路带电作业机器人控制系统中,所述控制器采用四层结构,所述pcb板大小为130mm*130mm。
12.优选的,所述的带电磁防护功能的输电线路带电作业机器人控制系统中,所述pcb
板上不兼容的信号线分开布置、且互相不平行。
13.优选的,所述的带电磁防护功能的输电线路带电作业机器人控制系统中,所述can总线采用屏蔽双绞线。
14.优选的,所述的带电磁防护功能的输电线路带电作业机器人控制系统中,所述无线网桥的馈线为双屏蔽层馈线。
15.优选的,所述的带电磁防护功能的输电线路带电作业机器人控制系统中,所述无线网桥的馈线包裹有锡箔纸。
16.优选的,所述的带电磁防护功能的输电线路带电作业机器人控制系统中,所述电源滤波器包括第一线圈、第二线圈、第三线圈、第四线圈、第五线圈、第一电容、第二电容和第三电容,所述第一线圈的一端和第二线圈的一端分别连接电压输出端的两端,所述第一线圈的另一端连接第一电容的一端、第三线圈的一端和第四线圈的一端,所述第二线圈的一端连接第一电容的另一端、第三线圈的另一端和第五线圈的一端,所述第四线圈的另一端连接第二电容的一端和第一输出端,所述第五线圈的另一端连接第三电容的一端和第二输出端,所述第二电容的另一端和第三电容的另一端均接地。
17.优选的,所述的带电磁防护功能的输电线路带电作业机器人控制系统中,所述软件防护系统包括看门狗单元、通信控制单元以及模拟信号处理单元,
18.所述看门狗单元用于监测控制系统的硬件状态;
19.所述通信监控单元用于建立上位机与机器人控制系统之间的实时通信机制;
20.所述模拟信号处理单元用于对输入的模拟信号进行滤波处理。
21.优选的,所述的带电磁防护功能的输电线路带电作业机器人控制系统中,所述通信监控单元具体用于:
22.判断每隔预设时间是否接收到上位机发送的握手指令,如果没有,则发出报警信号。
23.优选的,所述的带电磁防护功能的输电线路带电作业机器人控制系统中,所述模拟信号处理单元采用中位值平均滤波法对输入的模拟信号进行滤波处理。
24.与现有技术相比,本发明提供的带电磁防护功能的输电线路带电作业机器人控制系统,从控制系统的硬件和软件两方面对机箱内的机器人控制系统进行电磁防护设计,硬件部分由主控制器防护设计、供电电源防护设计、通讯模块防护设计构成,通过对信号线、地线和电源进行合理布置,采用电源滤波器等方法以提高控制系统的抗干扰能力;此外,还通过设置软件防护系统,可以监视硬件错误、通讯状态,并对输入的模拟信号进行处理,有效抑制周期干扰,弥补了单纯采用屏蔽机箱方法难以对高频电磁场进行防护的不足,增强了带电作业机器人长期运行于强电磁环境下的适应性。
附图说明
25.图1是本发明输电线路带电作业机器人控制系统电磁防护设计的一较佳实施例的示意图;
26.图2是本发明带电磁防护功能的输电线路带电作业机器人控制系统的一较佳实施例的示意图;
27.图3是本发明带电磁防护功能的输电线路带电作业机器人控制系统中,pcb板的布
局示意图;
28.图4是本发明带电磁防护功能的输电线路带电作业机器人控制系统中,所述电源滤波器的一较佳实施例的原理图。
具体实施方式
29.为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
30.请参阅图1至图3,本发明实施例提供一种带电磁防护功能的输电线路带电作业机器人控制系统,包括集成在pcb板上的控制器、电源模块和通信模块,所述pcb板上开设有通信接口、模拟输入输出接口和数字输入输出接口,所述控制器位于所述pcb板的中央,所述电源模块、通信接口、模拟输入输出接口和数字输入输出接口分别设置于所述控制器不同的侧边处,所述pcb板上不兼容的信号线连接的地线不同;
31.所述电源模块的各个电压输出端连接有电源滤波器,所述电源滤波器用于吸收电源启动时产生的电磁干扰;
32.所述can模块具有抗干扰的can总线以及无线网桥;
33.所述控制器中设置有软件防护系统,所述软件防护系统用于监测控制系统的硬件状态和通信状态、并对输入的模拟信号进行处理。
34.具体的,机器人控制系统分为硬件与软件两部分。如图2所示,硬件部分主要包括控制器、电源管理、通信模块。控制器以stm32f407芯片为核心,负责读取地面控制系统的指令并下发给执行机构,将机器人的箱体温度、姿态、电量、电机的速度、电流等信息上传给地面控制系统。带电作业机器人主控制器是整个控制系统中电位最小,最为敏感的部分,最容易受到电磁干扰,控制器的电磁防护,关键在于对控制器的元器件进行合理布局。因此,本发明根据功能对元器件进行合理的分组,把具有相同功能组件安排在一处。将arm芯片放置在pcb板中间位置,将电源模块设计在芯片右侧,将包含1个rj45自适应以太网口、1个can通讯接口、485接口2个、1个232接口的通讯接口模块设计在芯片左侧,将包含三个adc采集接口的模拟量输入输出模块设计在芯片下侧,将32路数字输入输出模块设计在芯片上侧,机器人控制器pcb示意图如图3所示,进而可以有效减少控制器受到的电磁干扰。
35.进一步的,在实际电路中,所有的电容均由l、c、r组成,在某一频率下,l-c串联将产生谐振,等效为短路状态。当电源频率高于电容的谐振频率时,电容变成感性阻抗,旁路、去祸、滤波的效果下降。电容的自谐振频率计算如下式所示:
[0036][0037]
因此,在设计电路时采用自谐振频率高的电容。此外,对信号线、地线和电源进行设计布置时应将信号线尽可能设计短从而减小各种pcb回路的阻抗差异;对数字和模拟信号、电源信号、通信信号进行“分地”处理,以降低共地时产生的阻抗耦合干扰;为了防止共地线阻抗耦合干扰,将电源信号、数字和模拟信号、通信信号进行“分地”处理。
[0038]
进一步的,机器人电源管理系统由一块48v20ah锂电池及降压模块组成,通过三路隔离稳压开关电源产生48v、24v、12v电压源。由于电机转动会带来很多电磁干扰,因此,本
发明通过在各电压源输出端加装一电源滤波器,可以有效的对电源线电磁干扰进行抑制。
[0039]
进一步的,通信模块由无线网桥及can总线两部分组成,其中无线网桥用于与地面控制系统的通信,can总线用于控制器与执行机构的通信,执行机构由驱动器及电机组成,用于完成机器人的各项任务。本发明为有效降低干扰时电压波动的幅度、并提高无线往前的馈线的抗干扰能力,所述can模块具有抗干扰的can总线以及无线网桥,从而增加机器人控制系统的电磁防护能力。
[0040]
进一步的,本发明为了保障机器人的稳定运行,在软件电磁防护方面,设置有软件防护系统,可以监测控制系统的硬件状态和通信状态、并对输入的模拟信号进行处理,进而进一步提高电磁防护能力。
[0041]
与现有技术相比,本发明从控制系统的硬件和软件两方面对机箱内的机器人控制系统进行电磁防护设计,硬件部分由主控制器防护设计、供电电源防护设计、通讯模块防护设计构成,通过对信号线、地线和电源进行合理布置,采用电源滤波器等方法以提高控制系统的抗干扰能力;此外,还通过设置软件防护系统,可以监视硬件错误、通讯状态,并对输入的模拟信号进行处理,有效抑制周期干扰,弥补了单纯采用屏蔽机箱方法难以对高频电磁场进行防护的不足,增强了带电作业机器人长期运行于强电磁环境下的适应性。
[0042]
在一个优选的实施例中,由于当控制器尺寸过大,线路过长,阻抗增加,抗噪声能力低,控制器设计过小则影响散热,pcb板中的线路容易相互干扰,影响控制器性能。因此,本实施例中,所述控制器采用四层结构,所述pcb板大小为130mm*130mm,可以保证控制器的性能。
[0043]
在一个优选的实施例中,所述pcb板上不兼容的信号线分开布置、且互相不平行。本实施例中,将信号线进行分组,将电路中的高速与低速、大电流与小电流、数字与模拟等不兼容的信号线分开布置,并且不兼容的信号线之间互相不平行,可以降低阻抗耦合干扰,增强电磁防护能力。
[0044]
在一个优选的实施例中,所述can总线采用屏蔽双绞线。具体的,本实施例中,由于can总线采用canh和canl差分传输,为了保证两根线受到的干扰相同,必须使得canh和canl紧靠在一起,故can信号的传输采用屏蔽双绞线,芯线截面积越大,canh(或canl)对屏蔽层的电容越小则传输线的阻抗越低,从而降低干扰时电压波动的幅度。
[0045]
在一个优选的实施例中,所述无线网桥的馈线为双屏蔽层馈线。具体的,本实施例中,由于无线网桥的馈线穿过机器人控制机箱与无线网桥连接,机器人挂接在输电线路上,馈线将与外部强电磁场产生感应耦合效应,采用双屏蔽层衰减系数小的馈线,提高无线网桥的馈线的抗干扰能力。
[0046]
在一个优选的实施例中,所述无线网桥的馈线包裹有锡箔纸,可以进一步提高无线网桥的馈线的抗干扰能力。
[0047]
请参阅图4,在一个优选的实施例中,所述电源滤波器包括第一线圈l1、第二线圈l2、第三线圈l3、第四线圈l4、第五线圈l5、第一电容c1、第二电容c2和第三电容c3,所述第一线圈l1的一端和第二线圈l2的一端分别连接电压输出端的两端,所述第一线圈l1的另一端连接第一电容c1的一端、第三线圈l3的一端和第四线圈l4的一端,所述第二线圈l2的一端连接第一电容c1的另一端、第三线圈l3的另一端和第五线圈l5的一端,所述第四线圈l4的另一端连接第二电容c2的一端和第一输出端,所述第五线圈l5的另一端连接第三电容c3
的一端和第二输出端,所述第二电容c2的另一端和第三电容c3的另一端均接地。
[0048]
本实施例中,可通过在各电压源输出端加装如图4所示电源滤波器,对电源线电磁干扰进行抑制,电源滤波器中设置有多个电容以及线圈,通过电容和线圈的结合滤波作用,可以有效对电源线的电磁干扰进行抑制。
[0049]
在一个优选的实施例中,所述软件防护系统包括看门狗单元、通信控制单元以及模拟信号处理单元,
[0050]
所述看门狗单元用于监测控制系统的硬件状态;
[0051]
所述通信监控单元用于建立上位机与机器人控制系统之间的实时通信机制;
[0052]
所述模拟信号处理单元用于对输入的模拟信号进行滤波处理。
[0053]
具体的,所述看门狗单元为控制器子代的独立看门狗时钟,其与控制系统主时钟单独存在,可以用该看门狗监控控制系统硬件。
[0054]
所述通信监控单元可以实现上位机与机器人之间实时通信机制的建立。所述通信监控单元具体用于:
[0055]
判断每隔预设时间是否接收到上位机发送的握手指令,如果没有,则发出报警信号。
[0056]
具体的,上位机每隔2s给机器人的控制系统发一条握手指令,若机器人控制系统2s之内没有收到指令,则说明其与地面通信中断,机器人无法接受地面人员的控制,会立即停止作业,此时报警提示用户。
[0057]
所述模拟信号处理单元采用中位值平均滤波法对输入的模拟信号进行滤波处理。本发明实施例对控制系统adc采集的模拟量进行中位值平均滤波法处理。adc每连续采集10次数据,删除其中的最大值和最小值,计算剩下8个数据的平均值。此处理可以避免某些采样值受到电磁场偶发性干扰而产生的巨大误差。
[0058]
综上所述,本发明提供的带电磁防护功能的输电线路带电作业机器人控制系统,从控制系统的硬件和软件两方面对机箱内的机器人控制系统进行电磁防护设计,硬件部分由主控制器防护设计、供电电源防护设计、通讯模块防护设计构成,通过对信号线、地线和电源进行合理布置,采用电源滤波器等方法以提高控制系统的抗干扰能力;此外,还通过设置软件防护系统,可以监视硬件错误、通讯状态,并对输入的模拟信号进行处理,有效抑制周期干扰,弥补了单纯采用屏蔽机箱方法难以对高频电磁场进行防护的不足,增强了带电作业机器人长期运行于强电磁环境下的适应性。
[0059]
以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

技术特征:
1.一种带电磁防护功能的输电线路带电作业机器人控制系统,包括集成在pcb板上的控制器、电源模块和通信模块,所述pcb板上开设有通信接口、模拟输入输出接口和数字输入输出接口,其特征在于,所述控制器位于所述pcb板的中央,所述电源模块、通信接口、模拟输入输出接口和数字输入输出接口分别设置于所述控制器不同的侧边处,所述pcb板上不兼容的信号线连接的地线不同;所述电源模块的各个电压输出端连接有电源滤波器,所述电源滤波器用于吸收电源启动时产生的电磁干扰;所述can模块具有抗干扰的can总线以及无线网桥;所述控制器中设置有软件防护系统,所述软件防护系统用于监测控制系统的硬件状态和通信状态、并对输入的模拟信号进行处理。2.根据权利要求1所述的一种带电磁防护功能的输电线路带电作业机器人控制系统,其特征在于,所述控制器采用四层结构,所述pcb板大小为130mm*130mm。3.根据权利要求1所述的带电磁防护功能的输电线路带电作业机器人控制系统,其特征在于,所述pcb板上不兼容的信号线分开布置、且互相不平行。4.根据权利要求1所述的带电磁防护功能的输电线路带电作业机器人控制系统,其特征在于,所述can总线采用屏蔽双绞线。5.根据权利要求1所述的带电磁防护功能的输电线路带电作业机器人控制系统,其特征在于,所述无线网桥的馈线为双屏蔽层馈线。6.根据权利要求5所述的带电磁防护功能的输电线路带电作业机器人控制系统,其特征在于,所述无线网桥的馈线包裹有锡箔纸。7.根据权利要求1所述的带电磁防护功能的输电线路带电作业机器人控制系统,其特征在于,所述电源滤波器包括第一线圈、第二线圈、第三线圈、第四线圈、第五线圈、第一电容、第二电容和第三电容,所述第一线圈的一端和第二线圈的一端分别连接电压输出端的两端,所述第一线圈的另一端连接第一电容的一端、第三线圈的一端和第四线圈的一端,所述第二线圈的一端连接第一电容的另一端、第三线圈的另一端和第五线圈的一端,所述第四线圈的另一端连接第二电容的一端和第一输出端,所述第五线圈的另一端连接第三电容的一端和第二输出端,所述第二电容的另一端和第三电容的另一端均接地。8.根据权利要求1所述的带电磁防护功能的输电线路带电作业机器人控制系统,其特征在于,所述软件防护系统包括看门狗单元、通信控制单元以及模拟信号处理单元,所述看门狗单元用于监测控制系统的硬件状态;所述通信监控单元用于建立上位机与机器人控制系统之间的实时通信机制;所述模拟信号处理单元用于对输入的模拟信号进行滤波处理。9.根据权利要求1所述的带电磁防护功能的输电线路带电作业机器人控制系统,其特征在于,所述通信监控单元具体用于:判断每隔预设时间是否接收到上位机发送的握手指令,如果没有,则发出报警信号。10.根据权利要求1所述的带电磁防护功能的输电线路带电作业机器人控制系统,其特征在于,所述模拟信号处理单元采用中位值平均滤波法对输入的模拟信号进行滤波处理。

技术总结
本发明公开一种带电磁防护功能的输电线路带电作业机器人控制系统,包括集成在PCB板上的控制器、电源模块和通信模块,PCB板上开设有通信接口、模拟输入输出接口和数字输入输出接口,控制器位于PCB板的中央,电源模块、通信接口、模拟输入输出接口和数字输入输出接口分别设置于控制器不同的侧边处,PCB板上不兼容的信号线连接的地线不同;电源模块的各个电压输出端连接有电源滤波器;所述CAN模块具有抗干扰的CAN总线以及无线网桥;所述控制器中设置有软件防护系统,所述软件防护系统用于监测控制系统的硬件状态和通信状态、并对输入的模拟信号进行处理。本发明解决了目前输电线路带电作业机器人抗干扰能力不强的问题。电作业机器人抗干扰能力不强的问题。电作业机器人抗干扰能力不强的问题。


技术研发人员:卞佳音 胡燃 许宇翔 曾庆华 吴炅 邓奥攀 卢海 何泽斌 刘锐鹏 彭红刚 徐研 谌昕 周军 骆锟 代飞 陈瑞红
受保护的技术使用者:广东电网有限责任公司广州供电局
技术研发日:2021.12.09
技术公布日:2022/3/8

最新回复(0)