1.本发明涉及陶瓷过滤的技术领域,更具体地说,尤其涉及一种能够释放负离子的陶瓷过滤膜;本发明还涉及该种过滤膜的制备方法。
背景技术:
2.陶瓷过滤膜是无机过滤膜中的一种,属于膜分离技术中的固体膜材料,一般以不同规格的氧化铝、氧化锆、氧化钛和氧化硅等无机陶瓷材料作为支撑体,经表面涂膜、高温烧制而成,也有的是直接使用氧化铝、氧化锆、氧化钛和氧化硅等无机陶瓷材料烧制而成。能够有效分离过滤液体或者气体,具有耐酸碱、耐有机溶剂、抗微生物、耐高温的特点,并且其机械强度高、再生性能也好,也更耐用,广泛应用于环保、水处理、气体分离净化、食品加工、膜催化、生物医药、膜生物反应器、资源回收再利用、精细化工等众多领域。
3.现有的陶瓷过滤膜一般使用三氧化二铝、氧化硅、碳化硅、氧化锆、氧化钛、硅藻土等无机材料制备而成,只实现物质分离过滤的作用。若能够使陶瓷过滤膜在实现物质分离过滤的过程中能够发挥更多的其他作用,使其应用领域更加多元化,成为了陶瓷过滤膜的研究新方向。
技术实现要素:
4.本发明的目的在于提供一种能够释放负离子的陶瓷过滤膜,利用该陶瓷过滤膜进行过滤,其自身长期产生电离子,使过滤物质离子化。
5.本发明的另一目的在于提供该种能够释放负离子的陶瓷过滤膜的制备方法,利用该制备方法能够制备出质量稳定的陶瓷过滤膜。
6.本发明采用的第一技术方案如下:
7.一种能够释放负离子的陶瓷过滤膜,包括过滤体层,其中,所述的过滤体层中包含有可释放负离子物质。
8.进一步的,所述的过滤体层中可释放负离子物质的含量为5~95%。
9.进一步的,还包括支撑体层(2),所述的支撑体层(2)设置在过滤体层(1)一侧并与过滤体层(1)固定连接。
10.进一步的,所述的支撑体层(2)包含有可释放负离子物质,在所述的支撑体层(2)中可释放负离子物质的含量为5~95%。
11.进一步的,所述的可释放负离子物质为天然矿物或者人工合成物质其中一种或者两者组合,所述的天然矿物为电气石,所述的人工合成物质为稀土氧化物、稀土化合物、稀土矿渣、负离子粉中的一种或者多种的组合。
12.本发明采用的第二技术方案如下:
13.一种能够释放负离子的陶瓷过滤膜的制备方法,包括以下步骤:
14.(1)按比例取可释放负离子物质,混合、粉碎后得可释放负离子粉体;
15.(2)取过滤体层材料,按配方将可释放负离子粉体加入过滤体层材料中混合,得过
滤体层混合料;
16.(3)将过滤体层混合料进行成形、烧制得陶瓷过滤膜。
17.进一步的,在所述的步骤(1)中,粉碎后的粉体还需要放置在直流高压电场中极化。
18.进一步的,在所述的步骤(4)中,还包括步骤(4)将陶瓷过滤膜放置在直流高压电场中极化,电场强度为800伏/mm以上。
19.本发明采用的第三技术方案如下:
20.一种能够释放负离子的陶瓷过滤膜的制备方法,包括以下步骤:
21.(1)按比例取可释放负离子物质,混合、粉碎后得可释放负离子粉体;
22.(2)分别取支撑体材料和过滤体层材料,按配方将可释放负离子粉体同时加入或者只加入到支撑体材料和过滤体层材料的其中一种,混合制备得支撑体混合坯料和过滤体层混合浆料;
23.(3)将支撑体混合坯料进行成形、烧制得支撑体层;
24.(4)将支撑体层表面覆盖过滤膜浆料得陶瓷过滤膜。
25.进一步的,在所述的步骤(1)中,若要制备出多种可释放负离子粉体时,先分别按配比要求配料,再分别进行混合、粉碎后得多种热释电粉体。
26.进一步的,在所述的步骤(1)中,所使用的可释放负离子物质为人工合成物质时,先按比例选择合成材料后混合、高温合成后再进行配料。
27.进一步的,在所述的步骤(1)中,粉碎后的粉体还需要放置在直流高压电场中极化。
28.进一步的,在步骤(2)中,若要制备出多种过滤体层混合浆料,按配方将不同的可释放负离子粉体分别过滤体层材料中,混合制成多种过滤体层混合浆料。
29.进一步的,在所述的步骤(4)中,将多种过滤体层混合浆料依次覆盖支撑体层表面。
30.进一步的,在所述的步骤(4)中,将覆盖了过滤膜浆料的支撑体层进行烧制得过滤膜。
31.进一步的,还包括步骤(5)中,将过滤膜放置在直流高压电场中极化,电场强度为800伏/mm以上。
32.与现有技术相比,本发明具有的有益效果为:
33.1.本发明的一种能够释放负离子的陶瓷过滤膜,通过设置过滤体层,并在过滤体层中包含有可释放负离子物质,使陶瓷过滤膜自身能够长期产生负离子,利用该陶瓷过滤膜进行过滤,使过滤物质离子化。
34.2.本发明的一种能够释放负离子的陶瓷过滤膜的制备方法,先比例取可释放负离子物质,混合、粉碎后得可释放负离子粉体;将可释放负离子粉体加入到过滤层材料后,制备出过滤膜,或者将可释放负离子粉体同时加入或者只加入到支撑体材料和过滤层材料的其中一种,再制备支撑体层和过滤体层得陶瓷过滤膜,利用该制备方法能够制备出质量稳定的陶瓷过滤膜。
附图说明
35.此处所说明的附图用来提供对本发明的进一步理解,构成本技术的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
36.图1是本发明的结构示意图1;
37.图2是本发明的结构示意图2。
38.附图标记说明:1、过滤体层;2、支撑体层。
具体实施方式
39.下面结合具体实施方式,对本发明的技术方案作进一步的详细说明,但不构成对本发明的任何限制。
40.参照图1所示,本发明的一种能够释负离子的陶瓷过滤膜,包括过滤体层1,其中,所述的过滤体层1中包含有可释放负离子物质。所述的过滤体层1中可释放负离子物质的含量为5~95%。
41.进一步的,参照图2所示,还包括支撑体层2,所述的支撑体层2设置在过滤体层1一侧并与过滤体层1固定连接。
42.本发明的陶瓷过滤膜,在制备陶瓷过滤膜的材料中加入了可释放负离子物质,使膜体自身长期产生电离子,能够对陶瓷过滤膜内部和周围的空气或者水负离子化。
43.利用本发明的陶瓷过滤膜对水进行过滤处理时,能够将经过其孔隙表面的水过滤,并且使水体自行电解,以获得界面活性作用、氯的安定化、铁的钝化(可预防红色铁锈生成)、水的还原化、二氧化硅与黏性物质(微生物集合体)去除等各种效果,此外,还具有抑菌除菌除臭等功效。进一步的,人们饮用负离子化的水对有以下作用:1、人体中带正电荷的氧自由基会促使人体衰老,人们饮用负离子化的水时,水中的负离子可以中和带正电荷的氧自由基,从而清除氧自由基,从而延缓人体的衰老进程。2、能够将水的ph值调节至偏碱性,人的体液的ph值一般是7.4左右,用饮用负离子化的水可以维持人体内的酸碱平衡,增强体质。
44.利用本发明的陶瓷过滤膜对空气进行过滤处理时,能够将经过其孔隙表面的空气负离子化,使经过陶瓷过滤膜过滤的空气不仅干净,而且含有对人体有益的负离子成份,同时还能够消除空气中的有害成份,如甲醛、异味等。进一步的,负离子化的空气具有调节人体离子平衡作用,能使身心放松,活化细胞,提高自然治愈率等作用,并能抑制身体的氧化或老化,现代的环境具有许多促使正离子生成的要因,身体经常处于紧张状态,因此,负离子是现代人不可或缺的物质。此外,负离子还具有除臭的效果。
45.所述的可释放负离子物质为天然矿物或者人工合成物质其中一种或者两者组合,所述的天然矿物为电气石,所述的人工合成物质为稀土氧化物、稀土化合物、稀土矿渣、负离子粉中的一种或者多种的组合,将这些材料加入到支撑体层2或者过滤体层1中,使其自身能够长期产生负离子。可释放负离子物质是人工合成的热释电材料,在所述的过滤体层1或者支撑体层2中可释放负离子物质的含量为5~95%。
46.优选的,在所述的过滤体层1或者支撑体层2中可释放负离子物质的含量为35~65%,这样的含量比例使陶瓷过滤膜的产生负离子效果更好。
47.本发明的一种能够释放负离子的陶瓷过滤膜的制备方法,包括以下步骤:
48.(1)按比例取可释放负离子物质,混合、粉碎后得可释放负离子粉体。
49.进一步的,粉碎后的粉体还需要放置在直流高压电场中极化。
50.(2)取过滤体层材料,按配方将可释放负离子粉体加入过滤体层材料中混合,得过滤体层混合料。可释放负离子粉体在过滤体层材料中可以是均匀分布,也可以是不均匀分布。
51.(3)将过滤体层混合料进行成形、烧制得陶瓷过滤膜。
52.(4)将过滤膜放置在直流高压电场中极化,电场强度为800伏/mm以上,可以加热极化,可以升温极化,可以降温极化,可以多次极化。
53.本发明的一种能够释放负离子的陶瓷过滤膜的制备方法,包括以下步骤:
54.(1)按比例取可释放负离子物质,混合、粉碎后得可释放负离子粉体。
55.其中,若要制备出多种可释放负离子粉体时,先分别按配比要求配料,再分别进行混合、粉碎后得多种热释电粉体。
56.当所使用的可释放负离子物质为人工合成物质时,先按比例选择合成材料后混合、高温合成后再进行配料。
57.进一步的,粉碎后的粉体还需要放置在直流高压电场中极化。
58.(2)分别取支撑体材料和过滤体层材料,按配方将可释放负离子粉体同时加入或者只加入到支撑体材料和过滤体层材料的其中一种,混合制备得支撑体混合坯料和过滤体层混合浆料。可释放负离子粉体在过滤体层材料或者支撑体材料中可以是均匀分布,也可以是不均匀分布。
59.其中,若要制备出多种过滤体层混合浆料,按配方将不同的可释放负离子粉体分别过滤体层材料中,混合制成多种过滤体层混合浆料。
60.(3)将支撑体混合坯料进行成形、烧制得支撑体层。成形工艺采用挤出成形、干压成形、注浆成形、热压注成形、注塑成形等工艺方法,烧制时的温度为300℃~1300℃,烧制的次数为一次、二次或多次,也可以是免烧制的。
61.(4)将支撑体层表面覆盖过滤膜浆料得陶瓷过滤膜。覆盖工艺可以采用浸涂法、喷涂法、浇淋法、甩淋法等方法。
62.其中,覆盖的过滤体层可以为多层,制备时将多种过滤体层混合浆料依次覆盖在支撑体层表面。
63.进一步的,将覆盖了过滤膜浆料的支撑体层进行烧制得过滤膜,烧制时的温度为300℃~1300℃。
64.(5)将过滤膜放置在直流高压电场中极化,电场强度为800伏/mm以上,可以加热极化,可以升温极化,可以降温极化,可以多次极化。
65.实施例1:
66.本发明的一种能够释放负离子的陶瓷过滤膜,其制备过程如下:
67.1、称取50公斤平均粒径10微米的电气石粉体,5.0公斤高岭土,1.3公斤滑石粉,2.0公斤低温玻璃粉,2.6公斤甲基纤维素,放入混料机混合均匀后,加入13公斤水搅拌均匀,再放入真空练泥机练成致密的可塑泥段,陈腐48小时后,放入真空挤出机挤出成形为多孔平板状的支撑体坯体,干燥后,放入窑炉中750℃保温2小时烧成,冷却后出窑,得到多孔平板状的支撑体层。
68.2、称取10公斤平均粒径0.5微米的钇稳定氧化锆粉体,430克低温玻璃粉,680克白碳黑,550克氧化钙,1.8公斤高岭土,35克甲基纤维素,水7.9公斤水,放入球磨机球磨2小时后出浆,加消泡剂除气泡,将该浆料用浇淋涂在多孔平板状的支撑体层所需的表面上,烘干,入窑700℃保温1小时烧成,冷却出窑,得到多孔平板状的陶瓷过滤膜。
69.实施例2:
70.本发明的一种能够释放负离子的陶瓷过滤膜,其制备过程如下:
71.1、称取15公斤平均粒径15微米的碳化硅粉体,10公斤平均粒径10微米的电气石粉体,1.7公斤低温玻璃粉,1.2公斤煅烧滑石粉,100克膨润土,50克甲基纤维素,18公斤水,减水剂适量,放入球磨机混合1小时后出浆,加消泡剂除气泡后,到入石膏模进行压力注浆成形,干燥脱模后得到单孔管状的支撑体坯体,干燥后,放入窑炉中800℃保温2小时烧成,冷却后出窑,得到单孔管状的支撑体层。
72.2、称取3公斤平均粒径0.5微米的碳化硅粉体,5公斤平均粒径0.5微米的电气石粉体,370克煅烧滑石粉,1.0公斤低温玻璃粉,0.1公斤膨润土,15克甲基纤维素,水6.9公斤水,减水剂适量,放入球磨机球磨2小时后出浆,加消泡剂除气泡,将该浆料浸涂在单孔管状的支撑体层所需的表面上,烘干,入窑700℃保温1小时烧成,冷却出窑,得到单孔管状的陶瓷过滤膜。
73.实施例3:
74.本发明的一种能够释放负离子的陶瓷过滤膜,其制备过程如下:
75.1、称取45公斤平均粒径15微米的石英粉体,5公斤平均粒径8微米的针状电气石粉体,2.0公斤高岭土,1.5公斤硼砂粉体,1.2公斤白碳黑,4.6公斤淀粉,2.0公斤甲基纤维素,放入混料机混合均匀后,加入19公斤水搅拌均匀,再放入真空练泥机练成致密的可塑泥段,陈腐48小时后,放入真空挤出机挤出成形为(ф40mm—ф8mm
×
9孔)的多孔管状的支撑体坯体,干燥后,放入窑炉中760℃保温2小时烧成,冷却后出窑,得到多孔管状的支撑体层。
76.2、称取10公斤平均粒径0.5微米的石英粉体,820克低温玻璃粉,250克高岭土,60克氧化钛,60克甲基纤维素,水16.8公斤水,减水剂适量,放入球磨机球磨1小时后出浆,加消泡剂除气泡,将该浆料浸涂在多孔管状的支撑体层所需的表面上,烘干,入窑700℃保温1小时烧成,冷却出窑,得到多孔管状的陶瓷过滤膜。
77.3、将得到的多孔管状的陶瓷过滤膜放置于极化设备中,通直流电形成强电场(2000伏/毫米)进行极化,保持60分钟后,撤除电场,取出陶瓷过滤膜,即得具有定向释放负离子的多孔管状的陶瓷过滤膜。
78.实施例4:
79.本发明的一种能够释放负离子的陶瓷过滤膜,其制备过程如下:
80.1、称取15公斤平均粒径15微米的氧化铝粉体,1.5公斤高岭土,0.22公斤氧化钛,1.25公斤低温玻璃粉,1.0公斤淀粉,0.8公斤甲基纤维素,放入混料机混合均匀后,加入6公斤水搅拌均匀,再放入真空练泥机练成致密的可塑泥段,陈腐48小时后得坯料1备用。
81.2、称取15公斤平均粒径15微米的氧化铝粉体,15公斤平均粒径15微米的电气石粉体,2.0公斤高岭土,0.32公斤氧化钛,1.30公斤低温玻璃粉,2.0公斤淀粉,1.3公斤甲基纤维素,放入混料机混合均匀后,加入9公斤水搅拌均匀,再放入真空练泥机练成致密的可塑泥段,陈腐48小时后得坯料2备用。
82.3、将坯料1和坯料2按1:4的重量比,同时一块一块按比例交替地放入真空挤出机挤出成形为多孔平板的支撑体坯体,干燥后,放入窑炉中750℃保温2小时烧成,冷却后出窑,得到多孔平板的支撑体层。
83.4、称取6.5公斤平均粒径0.5微米的氧化铝粉体,0.5公斤平均粒径0.5微米的电气石粉体,830克硅藻土,1.2公斤高岭土,1.0公斤低温玻璃粉,35克甲基纤维素,水6.6公斤水,放入球磨机球磨2小时后出浆,加消泡剂除气泡,将该浆料喷涂在多孔平板的支撑体层所需的表面上,烘干,入窑700℃保温1小时烧成,冷却出窑,得到多孔平板的陶瓷过滤膜。
84.实施例5:
85.本发明的一种能够释放负离子的陶瓷过滤膜,其制备过程如下:
86.1、称取40公斤平均粒径30微米的石英粉体,10公斤平均粒径5微米的刚玉粉体,2.0公斤高岭土,0.5公斤硼砂粉体,1.2公斤氧化钛,4.6公斤淀粉,2.0公斤甲基纤维素,放入混料机混合均匀后,加入19公斤水搅拌均匀,再放入真空练泥机练成致密的可塑泥段,陈腐48小时后,放入真空挤出机挤出成形为平板状的支撑体坯体,干燥后,放入窑炉中1200℃保温2小时烧成,冷却后出窑,得到平板状的支撑体层。
87.2、陶瓷膜层的制备:称取10公斤平均粒径0.5微米的电气石粉体,550克白碳黑,120克硼砂粉体,200克高岭土,330克低温玻璃粉,100克甲基纤维素,12.0公斤水,减水剂适量,放入球磨机球磨1小时后出浆,加消泡剂除气泡,将该浆料甩淋涂在平板状的支撑体层所需的表面上,烘干,入窑600℃保温1小时烧成,冷却出窑,得到平板状的陶瓷过滤膜。
88.实施例6:
89.本发明的一种能够释放负离子的陶瓷过滤膜,其制备过程如下:
90.1、称取13公斤电气石粉,6公斤石英粉,1公斤硅溶胶,1公斤氧化铈,外加8公斤水,放入球磨机球磨,颗粒度达到20微米时,出料烘干,粉碎后得到可释放负离子粉体备用。
91.2、称取20公斤平均粒径20微米的氧化铝粉体,30公斤可释放负离子粉体,3.2公斤高岭土,0.5公斤氧化钛,2.7公斤低温玻璃粉,3.0公斤淀粉,2.6公斤甲基纤维素,放入混料机混合均匀后,加入15公斤水搅拌均匀,再放入真空练泥机练成致密的可塑泥段,陈腐48小时后,放入真空挤出机挤出成形为多孔平板的支撑体坯体,干燥后,放入窑炉中730℃保温1小时烧成,冷却后出窑,得到多孔平板的支撑体层。
92.3、称取7公斤平均粒径0.3微米的稳定氧化锆粉体,3公斤0.5微米自制的负离子粉体,800克低温玻璃粉,200克高岭土,60克氧化钛,130克氧化钙,100克甲基纤维素,水13.5公斤水,减水剂适量,放入球磨机球磨2小时后出浆,加消泡剂除气泡,将该浆料喷涂在多孔平板的支撑体层所需的表面上,烘干,入窑660℃保温1小时烧成,冷却出窑,得到多孔平板的陶瓷过滤膜。
93.4、将多孔平板的陶瓷过滤膜放置于极化设备中,通直流电形成强电场(1500伏/毫米)进行极化,保持60分钟后,撤除电场,取出多孔平板的陶瓷过滤膜,即得到具有定向释放负离子的多孔平板的陶瓷过滤膜。
94.实施例7:
95.本发明的一种能够释放负离子的陶瓷过滤膜,其制备过程如下:
96.1、称取30公斤电气石粉,20公斤精选的含釹稀土矿渣粉,外加0.3公斤氧化钐,放入球磨机球磨混料,将混好的料在600℃合成,最后将合成料粉碎达到粒径0.1微米时,得到
可释放负离子粉体备用。
97.2、称取20公斤平均粒径20微米的氧化铝粉体,5公斤平均粒径20微米的电气石粉体,2.5公斤高岭土,0.3公斤氧化钛,0.8公斤低温玻璃粉,3.0公斤淀粉,1.5公斤甲基纤维素,放入混料机混合均匀后,加入8.0公斤水搅拌均匀,再放入真空练泥机练成致密的可塑泥段,陈腐48小时后,放入真空挤出机挤出成形为多孔平板状的支撑体坯体,干燥后,放入窑炉中780℃保温1小时烧成,冷却后出窑,得到多孔平板状的支撑体层。
98.3、称取7公斤可释放负离子粉体,3公斤平均粒径0.5微米的氧化钛粉体,150克白碳黑,100克硼砂粉体,370克高岭土,380克低温玻璃粉体,100克甲基纤维素,6.0公斤水,减水剂适量,放入球磨机球磨30分钟后出浆,加消泡剂除气泡得膜浆料1备用。
99.4、称取5公斤平均粒径0.5微米的氧化钛粉体,350克低温玻璃粉,120克高岭土,60克碳酸钙,60克甲基纤维素,水7.5公斤水,减水剂适量,放入球磨机球磨1小时后出浆,加消泡剂除气泡,得膜浆料2备用。
100.5、先将膜浆料2喷涂在多孔平板状的支撑体层所需的表面上,烘干,再将膜浆料1喷涂在膜浆料2表面上,烘干,入窑720℃保温1小时烧成,冷却出窑,得到多孔平板状的陶瓷过滤膜。
101.实施例8:
102.本发明的一种能够释放负离子的陶瓷过滤膜,其制备过程如下:
103.1、称取30公斤电气石粉,20公斤精选的稀土矿渣粉,2.5公斤硝酸铈,28公斤水,5公斤5%pva水溶液,放入球磨机球磨混料,将混好的料喷雾干燥,在600℃煅烧合成,最后将合成料粉碎到粒径50微米时,得到可释放负离子粉体备用。
104.2、称取19公斤平均粒径50微米的氧化铝粉体,1公斤负离子粉体,1.6公斤高岭土,0.3公斤氧化钛,1.2公斤低温玻璃粉,3.0公斤淀粉,1.2公斤甲基纤维素,放入混料机混合均匀后,加入7.0公斤水搅拌均匀,再放入真空练泥机练成致密的可塑泥段,陈腐48小时后,放入真空挤出机挤出成形为多孔平板状的支撑体坯体,干燥后,放入窑炉中750℃保温1小时烧成,冷却后出窑,得到多孔平板状的支撑体层。
105.3、称取3公斤可释放负离子粉,7公斤平均粒径0.5微米的氧化铝粉体,150克白碳黑,100克氧化钛粉体,370克高岭土,280克低温玻璃粉体,100克甲基纤维素,6.0公斤水,减水剂适量,放入球磨机球磨30分钟后出浆,加消泡剂除气泡,得膜浆料备用。
106.4、将膜浆料喷涂在多孔平板状的支撑体层所需的表面上,烘干,入窑600℃保温1小时烧成,冷却出窑,得到多孔平板状的陶瓷过滤膜。
107.实施例9:
108.1、称取15公斤电气石粉,5公斤精选的稀土矿渣粉,2.0公斤硝酸铈,1.0公斤硝酸锆,0.5公斤硝酸铝,0.3公斤氯化钠,12公斤水,2公斤5%pva水溶液,放入球磨机球磨混料,将混合的浆料喷雾干燥,在600℃煅烧合成,将合成料粉碎到粒径20微米时,进行电极化处理,得到可释放负离子粉体备用。
109.2、称取40公斤平均粒径80微米的氧化铝粉体,4.6公斤高岭土,0.75公斤氧化钛,0.83公斤碳酸钙,2.0公斤淀粉,2.6公斤甲基纤维素,放入混料机混合均匀后,加入10公斤水搅拌均匀,再放入真空练泥机练成致密的可塑泥段,陈腐48小时后,放入真空挤出机挤出成形为大孔径的管式支撑体坯体,干燥后,放入窑炉中1300℃保温2小时烧成,冷却后出窑,
得到大孔径的管式支撑体层。
110.3、称取5公斤可释放负离子粉体,1公斤平均粒径20微米的氧化铝粉体,430克硅藻土,600克高岭土,389克低温玻璃粉,35克甲基纤维素,水4.0公斤水,放入球磨机球磨0.5小时后出浆,加消泡剂除气泡,将该浆料浸涂在大孔径的管式支撑体层所需的表面上,烘干,入窑600℃保温1小时烧成,冷却出窑,得到大孔径的管式陶瓷过滤初膜体。
111.4、称取2公斤可释放负离子粉体,加入10公斤平均粒径20微米的氧化铝免烧陶瓷膜浆料中,外加1.0公斤水,放入球磨机球磨0.5小时后出浆,加消泡剂除气泡,将该浆料浸涂在大孔径的管式陶瓷过滤初膜体所需的表面上,烘干,得到大孔径的管式陶瓷过滤膜。
112.实施例10:
113.本发明的一种能够释放负离子的陶瓷过滤膜,其制备过程为:
114.称取35公斤平均粒径5微米的氧化铝粉体,15公斤平均粒径5微米的电气石粉体,3.0公斤高岭土,1.3公斤滑石粉,4.0公斤低温玻璃粉,6公斤淀粉,2.6公斤甲基纤维素,放入混料机混合均匀后,加入15公斤水搅拌均匀,再放入真空练泥机练成致密的可塑泥段,陈腐48小时后,放入真空挤出机挤出成形为多孔平板状的陶瓷过滤膜坯体,干燥后,放入窑炉中700℃保温2小时烧成,冷却后出窑,得到多孔平板状的陶瓷过滤膜。
115.以上所述仅为本发明的较佳实施例,凡在本发明的精神和原则范围内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
技术特征:
1.一种能够释放负离子的陶瓷过滤膜,包括过滤体层(1),其特征在于,所述的过滤体层(1)中包含有可释放负离子物质。2.根据权利要求1所述的一种能够释放负离子的陶瓷过滤膜,其特征在于,所述的过滤体层(1)中可释放负离子物质的含量为5~95%。3.根据权利要求1所述的一种能够释放负离子的陶瓷过滤膜,其特征在于,还包括支撑体层(2),所述的支撑体层(2)设置在过滤体层(1)一侧并与过滤体层(1)固定连接。4.根据权利要求1所述的一种能够释放负离子的陶瓷过滤膜,其特征在于,所述的支撑体层(2)包含有可释放负离子物质,在所述的支撑体层(2)中可释放负离子物质的含量为5~95%。5.根据权利要求1或4所述的一种能够释放负离子的陶瓷过滤膜,其特征在于,所述的可释放负离子物质为天然矿物或者人工合成物质其中一种或者两者组合,所述的天然矿物为电气石,所述的人工合成物质为稀土氧化物、稀土化合物、稀土矿渣、负离子粉中的一种或者多种的组合。6.一种获取权利要求1所述的一种能够释放负离子的陶瓷过滤膜的制备方法,其特征在于,包括以下步骤:(1)按比例取可释放负离子物质,混合、粉碎后得可释放负离子粉体;(2)取过滤体层材料,按配方将可释放负离子粉体加入过滤体层材料中混合,得过滤体层混合料;(3)将过滤体层混合料进行成形、烧制得陶瓷过滤膜。7.根据权利要求6所述的一种能够释放负离子的陶瓷过滤膜的制备方法,其特征在于,在所述的步骤(1)中,粉碎后的粉体还需要放置在直流高压电场中极化。8.根据权利要求6所述的一种能够释放负离子的陶瓷过滤膜的制备方法,其特征在于,还包括步骤(4)将陶瓷过滤膜放置在直流高压电场中极化,电场强度为800伏/mm以上。9.一种获取权利要求3所述的一种能够释放负离子的陶瓷过滤膜的制备方法,其特征在于,包括以下步骤:(1)按比例取可释放负离子物质,混合、粉碎后得可释放负离子粉体;(2)分别取支撑体材料和过滤体层材料,按配方将可释放负离子粉体同时加入或者只加入到支撑体材料和过滤体层材料的其中一种,混合制备得支撑体混合坯料和过滤体层混合浆料;(3)将支撑体混合坯料进行成形、烧制得支撑体层;(4)将支撑体层表面覆盖过滤膜浆料得陶瓷过滤膜。10.根据权利要求9所述的一种能够释放负离子的陶瓷过滤膜的制备方法,其特征在于,在所述的步骤(1)中,若要制备出多种可释放负离子粉体时,先分别按配比要求配料,再分别进行混合、粉碎后得多种热释电粉体。11.根据权利要求9或10所述的一种能够释放负离子的陶瓷过滤膜的制备方法,其特征在于,在所述的步骤(1)中,所使用的可释放负离子物质为人工合成物质时,先按比例选择合成材料后混合、高温合成后再进行配料。12.根据权利要求9或10所述的一种能够释放负离子的陶瓷过滤膜的制备方法,其特征在于,在所述的步骤(1)中,粉碎后的粉体还需要放置在直流高压电场中极化。
13.根据权利要求10所述的一种能够释放负离子的陶瓷过滤膜的制备方法,其特征在于,在步骤(2)中,若要制备出多种过滤体层混合浆料,按配方将不同的可释放负离子粉体分别过滤体层材料中,混合制成多种过滤体层混合浆料。14.根据权利要求13所述的一种能够释放负离子的陶瓷过滤膜的制备方法,其特征在于,在所述的步骤(4)中,将多种过滤体层混合浆料依次覆盖支撑体层表面。15.根据权利要求9所述的一种能够释放负离子的陶瓷过滤膜的制备方法,其特征在于,在所述的步骤(4)中,将覆盖了过滤膜浆料的支撑体层进行烧制得过滤膜。16.根据权利要求9所述的一种能够释放负离子的陶瓷过滤膜的制备方法,其特征在于,还包括步骤(5)中,将过滤膜放置在直流高压电场中极化,电场强度为800伏/mm以上。
技术总结
本发明公开了一种能够释放负离子的陶瓷过滤膜,属于陶瓷过滤的技术领域,利用该陶瓷过滤膜进行过滤,其自身长期产生电离子,使过滤物质离子化;包括过滤体层,所述的过滤体层中包含有可释放负离子物质。本发明还公开了该种陶瓷过滤膜的制备方法,(1)按比例取可释放负离子物质,混合、粉碎后得可释放负离子粉体;(2)取过滤体层材料,按配方将可释放负离子粉体加入过滤体层材料中混合,得过滤体层混合料;(3)将过滤体层混合料进行成形、烧制得陶瓷过滤膜。过滤膜。过滤膜。
技术研发人员:秦玉兰 蔡晓峰 高明河 冉健辉
受保护的技术使用者:广西碧清源环保投资有限公司
技术研发日:2021.12.09
技术公布日:2022/3/8