1.本发明涉及不锈钢生产技术领域,尤其涉及一种高铬镍不锈钢冷轧钢带退火酸洗工艺方法。
背景技术:
2.高铬镍不锈钢,如耐热不锈钢、超级奥氏体不锈钢和镍基合金等,由于较高百分比的的cr、ni或mo含量,具有良好的耐腐蚀和耐高温性能,耐酸洗性较强,酸洗效率较低,且经常出现单面(对应为退火炉下表面)铁麟残留未洗尽或者过酸洗的缺陷。
3.虽然通过重刷或者抛丸等机械除麟方法可以提升酸洗效率,并可以解决酸洗后铁麟残留或者过酸洗的问题,但是其对冷轧钢带的表面有一定程度的破坏,提高了粗糙度,对钢带的耐腐蚀性能有一定影响。
4.为了解决铁麟残留未洗尽或者过酸洗的问题,并提升酸洗效率和降低冷轧钢带表面粗糙度,采用了本方法。本发明通过采用“短时高温退火”和“短时强电流”原则优化钢带退火酸洗工艺参数,使得钢带酸洗效率有较大幅度提升,同时获得了良好的表面酸洗质量。
5.
技术实现要素:
6.本发明的目的就是针对上述问题,提供一种高铬镍不锈钢冷轧钢带退火酸洗工艺方法。
7.本发明的目的是这样实现的:一种高铬镍不锈钢冷轧钢带退火酸洗工艺方法,包括以下步骤:步骤一:冷轧退火:退火温度为1120-1140℃,高温的保温时间为1.0-2.0min/mm;步骤二:电解酸洗:酸洗的介质为na2so4溶液,比重为1 .12-1 .20,温度为80-85℃,电解时间为1.0-2.5min,电流设定7000-9000a;步骤三:混酸酸洗:使用hf与hno3的混合溶液, hf浓度为25-40g/l,hno3浓度为100-120g/l,混酸酸温为55-60℃。
8.进一步的讲,步骤一中加热区投用量需根据工艺速度调整,保证高温保温时间为1.0-2.0min/mm。
9.进一步的讲,步骤二中电解柜投用量需根据工艺速度调整,保证电解时间为1.0-2.5min。
10.进一步的讲,步骤一中高温的温度为1060℃-1150℃,投入加热区的范围值是1-10个。
11.本发明的有益效果是:本发明的提供的一种高铬镍不锈钢冷轧钢带退火酸洗工艺方法,其特点是采用纯化学酸洗法对高铬镍不锈钢冷轧钢带进行酸洗,通过采用“短时高温退火”和“短时强电流”原则优化退火和酸洗工艺参数,使不同高铬镍钢种的工艺速度均有较大幅度的提高,同时解决了酸洗后单面(对应为退火炉下表面)铁麟残留或过酸洗缺陷,
降低了高铬镍冷轧钢带粗糙度,耐腐蚀性得到改善。
具体实施方式
12.本发明的技术思路:(1)冷轧退火对酸洗效率及质量的影响高铬镍经常出现酸洗后单面(对应为退火炉下表面)铁麟残留或过酸洗缺陷的主要原因是,为了保证钢带的板温,较慢的工艺段速度,导致退火炉内各加热区的加热功率较低,加热功率较低时只开下烧嘴,导致下表面氧化严重。下表面氧化严重给后续的酸洗带来了较大的负担,同时酸洗后极易导致过酸洗,严重的表面有小凹坑缺陷。
13.针对不同的钢种的退火酸洗特性,确定了最优的退火酸洗段的工艺速度,同时根据工艺速度和高温(≥1000℃)保温时间1-2min/mm的原则,确定退火炉加热区的投用量,既保证了足够的退火时间,又避免了部分加热区因功率不足只开下烧嘴造成的下表面过氧化。
14.(2)电解酸洗电解酸洗的原理,是将带钢表面fe、cr的氧化物还原为易溶于水的低价fe、cr的氧化物,此反应析出氢气,通过机械的方法把氢气从fe、cr的氧化物内部剥离出来,促进后续混酸酸洗的进行。一般的奥氏体不锈钢电解酸洗工艺为电解电流7000-9000a,但是由于高铬镍不锈钢酸洗速度较低,较长时间的电解易导致钢带表面过酸洗,使得表面粗糙严重的甚至有密集的小坑缺陷。
15.本发明根据电解电流酸洗特性,在确定了最优的退火酸洗段的工艺速度时,在较大的电解电流情况下,对电解柜的投用量进行减少,采用“短时强电解”原则进行电解酸洗。
16.(3)混酸酸洗hf能促进基体溶解,对难溶的铁铬氧化物有较强的渗透溶解能力,同时溶液中的f-常作为配体,将过剩的fe
3+
和cr
3+
结合成复杂的氟配位化合物,促进溶解产物脱离金属表面,有利于酸洗反应的进行。hno3是一种强氧化剂,是基体金属的氧化剂,使基体金属钝化阻止酸液对基体的进一步侵蚀。一般的奥氏体不锈钢由于耐酸洗性较差,一般需要较高的hno3浓度(120-180g/l),和相对较低的hf浓度(8-15g/l),酸温为40-50℃。
17.本发明通过酸液配方的优化,提出了较高hf浓度(25-40g/l)和较低hno3浓度(80-100g/l)高铬镍专用酸洗配方,并将酸温提升至55-60℃,在提升了酸洗效率的同时防止了基体金属的进一步侵蚀。
18.与现有技术相比,本发明的优点是采用纯化学酸洗法对高铬镍不锈钢冷轧钢带进行酸洗,通过采用“短时高温退火”和“短时强电流”原则优化退火和酸洗工艺参数,使不同高铬镍钢种的工艺速度均有较大幅度的提高,同时解决了酸洗后单面(对应为退火炉下表面)铁麟残留或过酸洗缺陷,降低了高铬镍冷轧钢带粗糙度,改善了其耐腐蚀性能。
19.下面结合实施例详细说明本发明的具体实施方式,但本发明的具体实施方式不局限于下述的实施例。
20.实施例1本实施例的高铬镍不锈钢为309s。
21.产品规格为2.0*1540*c。
22.本实施例的步骤依次如下:原材料准备,选用厚度5.0mm,宽度1500mm的热轧钢卷,通过冷轧轧制获得实施例所需原材料;冷轧退火,退火温度1130℃,投用加热区7个,高温保温时间1.12min/mm;电解酸洗,na2so4溶液比重1 .15,温度80℃,电流设定8000a,投用电解柜4组,电解时间1.6min;混酸酸洗,hf浓度30g/l,hno3浓度为110g/l,混酸酸温55℃,混酸酸洗时间2.4min;通过上述工艺步骤,得到了最终的产品。退火酸洗工艺段速度可以达到25m/min较现有技术工艺速度(10-15 m/min)有较大幅度提升。
23.最终产品的屈服强度298mpa,抗拉强度685mpa,延伸率48%,洛氏硬度88hrb,表面状态良好,带钢表层氧化皮去除干净,无过酸洗所致的小凹坑缺陷,表面粗糙度良好,改善了其耐腐蚀性能。
24.实施例2本实施例的高铬镍不锈钢为904l。
25.产品规格为1.0*1540*c。
26.本实施例的步骤依次如下:原材料准备,选用厚度3.0mm,宽度1500mm的热轧钢卷,通过冷轧轧制获得实施例所需原材料;冷轧退火,退火温度1130℃,投用加热区2个,高温保温时间1.1min/mm;电解酸洗,na2so4溶液比重1 .15,温度80℃,电流设定8000a,投用电解柜2组,电解时间1.4min;混酸酸洗,hf浓度35g/l,hno3浓度为110g/l,混酸酸温55℃,混酸酸洗时间4.0min;通过上述工艺步骤,得到了最终的产品。退火酸洗工艺段速度可以达到15m/min较现有技术工艺速度(5-8m/min)有较大幅度提升。
27.最终产品的屈服强度304mpa,抗拉强度638mpa,延伸率46%,洛氏硬度85hrb,表面状态良好,带钢表层氧化皮去除干净,无过酸洗所致的小凹坑缺陷,表面粗糙度良好,改善了其耐腐蚀性能。
28.实施例3本实施例的高铬镍不锈钢为n08800。
29.产品规格为1.5*1250*c。
30.本实施例的步骤依次如下:原材料准备,选用厚度5.0mm,宽度1250mm的热轧钢卷,通过冷轧轧制获得实施例所需原材料;冷轧退火,退火温度1130℃,投用加热区7个,高温保温时间1.1min/mm;电解酸洗,na2so4溶液比重1 .15,温度80℃,电流设定8000a,投用电解柜5组,电解时间1.5min;混酸酸洗,hf浓度30g/l,hno3浓度为120g/l,混酸酸温55℃,混酸酸洗时间
1.8min;通过上述工艺步骤,得到了最终的产品。退火酸洗工艺段速度可以达到35m/min较现有技术工艺速度(10-15 m/min)有较大幅度提升。
31.最终产品的屈服强度272mpa,抗拉强度595mpa,延伸率49%,洛氏硬度83hrb,表面状态良好,带钢表层氧化皮去除干净,无过酸洗所致的小凹坑缺陷,表面粗糙度良好,改善了其耐腐蚀性能。
32.以上所述仅为本发明的具体实施例,但本发明所保护范围的结构特征并不限于此,任何本领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的专利范围内。
技术特征:
1.一种高铬镍不锈钢冷轧钢带退火酸洗工艺方法,其特征在于:包括以下步骤:步骤一:冷轧退火:退火温度为1120-1140℃,高温的保温时间为1.0-2.0min/mm;步骤二:电解酸洗:酸洗的介质为na2so4溶液,比重为1 .12-1 .20,温度为80-85℃,电解时间为1.0-2.5min,电流设定7000-9000a;步骤三:混酸酸洗:使用hf与hno3的混合溶液, hf浓度为25-40g/l,hno3浓度为100-120g/l,混酸酸温为55-60℃。2.根据权利要求1所述的一种高铬镍不锈钢冷轧钢带退火酸洗工艺方法,其特征在于: 步骤一中加热区投用量需根据工艺速度调整,保证高温保温时间为1.0-2.0min/mm。3.根据权利要求1所述的一种高铬镍不锈钢冷轧钢带退火酸洗工艺方法,其特征在于:步骤二中电解柜投用量需根据工艺速度调整,保证电解时间为1.0-2.5min。4.根据权利要求1所述的一种高铬镍不锈钢冷轧钢带退火酸洗工艺方法,其特征在于:步骤一中高温的温度为1060℃-1150℃,投入加热区的范围值是1-10个。
技术总结
本发明涉及不锈钢生产技术领域,一种高铬镍不锈钢冷轧钢带退火酸洗工艺方法,包括以下步骤:步骤一:冷轧退火;步骤二:电解酸洗。本发明的提供的一种高铬镍不锈钢冷轧钢带退火酸洗工艺方法解决了酸洗后单面(对应为退火炉下表面)铁麟残留或过酸洗缺陷,降低了高铬镍冷轧钢带粗糙度,耐腐蚀性得到改善。耐腐蚀性得到改善。
技术研发人员:邓帅帅 张威 李阳 尹嵬
受保护的技术使用者:山西太钢不锈钢股份有限公司
技术研发日:2021.12.09
技术公布日:2022/3/8