一种半菁类小分子化合物作为荧光探针及光动力抗菌剂的应用

专利查询2023-6-11  97


trans.44(2015)13818

13822;或者,文献3:l.h.gao,w.c.jiang,k.z.wang,preparation and photocatalytic activity of an electrostatically self-assembled film made of[pmo12o40]3-and a bipolar hemicyanine cation,j.nanosci.nanotechnol.11(2011)9813

9817.公开的方法。
[0009]
在一个实施例中,式(i)化合物中,r1、r2独立地选自c1~c5烷基;x为br;n为1~10。
[0010]
在一个实施例中,式(i)化合物中,r1和r2为甲基,n为3、6或10,其结构式如式(ii)所示:
[0011][0012]
式(ii)中,n为3、6或10。
[0013]
本发明提供了上述化合物作为荧光探针的应用。在一个实施例中,其可以作为荧光探针对病原微生物进行染色,从而在共聚焦激光扫描显微镜或荧光显微镜下检测病原微生物是否存在。在一个实施例中,所述病原微生物为革兰氏阴性菌、革兰氏阳性菌或真菌。在一个实施例中,所述病原微生物为大肠杆菌(amp
r e.coli)、金黄色葡萄球菌(s.aureus)或白色念珠菌(c.albicans)。在一个实施例中,大肠杆菌的od
600
=1.0,金黄色葡萄球菌的od
600
=1.0,白色念珠菌的od
600
=1.5。
[0014]
在一个实施例中,其可以作为荧光探针对大肠杆菌(amp
r e.coli)进行染色,并结合其他商用细胞核染料,在共聚焦激光扫描显微镜或荧光显微镜下检测大肠杆菌是否存活。
[0015]
本发明还提供了上述化合物在制备检测大肠杆菌是否存活的试剂盒中的应用或者在制备检测病原微生物试剂盒中的应用,具体而言,在制备检测大肠杆菌是否存活的试剂盒或制备检测病原微生物试剂盒时,以上述化合物作为荧光探针。在一个实施例中,所述病原微生物为革兰氏阴性菌、革兰氏阳性菌或真菌。在一个实施例中,所述病原微生物为大肠杆菌(amp
r e.coli)、金黄色葡萄球菌(s.aureus)或白色念珠菌(c.albicans)。在一个实施例中,大肠杆菌的od
600
=1.0,金黄色葡萄球菌的od
600
=1.0,白色念珠菌的od
600
=1.5。
[0016]
本发明还提供了上述化合物作为光动力抗菌剂的应用,在光照条件下杀灭病原微生物。在一个实施例中,所述病原微生物或者所述光动力抗菌剂的目标病原微生物为革兰氏阴性菌、革兰氏阳性菌或真菌。在一个实施例中,所述病原微生物为大肠杆菌(amp
r e.coli)、金黄色葡萄球菌(s.aureus)或白色念珠菌(c.albicans)。在一个实施例中,大肠杆菌的od
600
=1.0,金黄色葡萄球菌的od
600
=1.0,白色念珠菌的od
600
=1.5。
[0017]
具有式(i)所示结构的化合物具有大的疏水结构和正电基团,使得该类有机分子能够同带负电且表面疏水的病原微生物有效结合,作为病原微生物检测和杀伤材料具有以下优点:(1)斯托克斯位移大,用于生物成像可以避免生物组织的自吸收;(2)荧光量子产率高;(3)最大发射波长在600nm左右,趋向于发射红光可有效区分组织自身的绿色荧光;(4)区分活菌和死菌的能力;(5)优异的敏化产生活性氧的能力,从而可通过光动力疗法有效灭菌;(6)广谱的灭菌活性,可有效针对细菌和真菌。本发明提供的阳离子有机共轭小分子不仅可作为病原微生物(革兰氏阴性菌,革兰氏阳性菌,真菌)的成像探针,同时可作为一种广
photocatalytic activity,dalton trans.44(2015)13818

13822;
[0034]
文献3为:l.h.gao,w.c.jiang,k.z.wang,preparation and photocatalytic activity of an electrostatically self-assembled film made of[pmo12o40]3-and a bipolar hemicyanine cation,j.nanosci.nanotechnol.11(2011)9813

9817.
[0035]
实施例4
[0036]
利用2,7-二氯荧光素二乙酸盐(dcfh-da)作为活性氧(ros)的检测探针,测试实施例1~3制备的半菁类小分子化合物敏化产生ros的能力,具体包括如下步骤:
[0037]
取4.87mg dcfh-da溶解于1ml乙醇中得到10mm的dcfh-da储备液并置于-20℃的冰箱中备用。
[0038]
实验前取50μl 10mm的dcfh-da储备液加入450μl乙醇和2ml0.01m naoh水溶液后于室温避光储存活化30min,使dcfh-da水解从而得到2,7-二氯二氢荧光素(dcfh),再加入10ml 1
×
pbs(10mm,ph=7.4)得到终浓度为40μm的dcfh溶液置于冰上避光保存。
[0039]
在活性氧(ros)的存在下,dcfh会转化成高量子产率的2,7-二氯荧光素(dcf,激发488nm,发射524nm),其转化过程如下所示:
[0040][0041]
在比色皿中加入1ml上述dcfh溶液和0.5μl 1mm半菁类小分子化合物得到终浓度为0.5μm的混合液,混匀后在白光(5mw/cm2)下照射0、1、2、3、4和5min,分别记录在488nm激发下dcf在524nm处的荧光强度。
[0042]
空白组为在1ml未添加任何待测样品的活化dcfh溶液(40μm)加入0.5μl超纯水,测试过程与上述实验组相同。
[0043]
该实施例中通过测试半菁类小分子化合物与dcfh光照后在524nm处的荧光强度来判断其敏化周围氧气产生ros的能力。结果如图1所示,图1为实施例1~3制备的半菁类小分子基化合物随着白光照射时间的增加在524nm处荧光强度的变化情况,从图1中可以看出,与未添加半菁类小分子化合物的对照组相比,实验组的荧光强度明显增加,c6的荧光强度增加最为显著,表明其敏化氧气产生ros的能力最强,c3和c10相差不大。因此,半菁类小分子化合物展示了优异的敏化氧气产生ros的能力,具有作为灭菌剂的潜力。
[0044]
实施例5
[0045]
在不同病原微生物:大肠杆菌(amp
r e.coli),金黄色葡萄球菌(s.aureus),真菌白色念珠菌(c.albicans)中加入实施例1~3制备的半菁类小分子化合物,用共聚焦激光扫描显微镜(clsm)或荧光显微镜检测其是否可以染色病原微生物,具体可包括如下步骤:
[0046]
取100μl od
600
=1.0的菌液加入实施例1~3制备的半菁c3、c6、c10,后加入1
×
pbs(10mm,ph=7.4)补充总体积至500μl,使半菁c3、c6、c10终浓度为0.5μm并分为光照组和黑暗组。
[0047]
将样品置于霉菌培养箱(细菌37℃,真菌30℃)中孵育30min,取出后避光组用锡纸包好置于暗处,同时光照组在白光(65mw/cm2)下照射10min。
[0048]
大肠杆菌(amp
r e.coli)悬浮于含有2μm dapi的pbs中,室温染色15min。用pbs洗2次后离心(10000rpm,10min)弃去上清液,用于clsm成像表征。
[0049]
金黄色葡萄球菌(s.aureus)和真菌白色念珠菌(c.albicans)光照后直接离心弃去上清液,加入10μl无菌1
×
pbs(10mm,ph=7.4)混合均匀得到悬浮液,用于荧光显微镜成像表征。
[0050]
半青c3、c6、c10的激发波长分别为465nm、455nm、460nm,dapi的激发波长为405nm,设置伪色为绿色荧光。对照组为不添加半菁的病原微生物。
[0051]
结果如下:
[0052]
一)半菁对amp
r e.coli的成像实验
[0053]
为了探究半菁对amp
r e.coli的染色情况,选择商用细胞核染料(dapi)用来与半菁共定位。amp
r e.coli先与不同浓度的半菁于37℃孵育30min,随后悬浮于含有2μm dapi的pbs中室温染色15min。分别用465nm、455nm、460nm和405nm波长的光激发进行荧光成像,结果参见图2,图2为商用细胞核染料(dapi)与三种半菁类衍生物(c3,c6,c10)对大肠杆菌(ampr e.coli)共定位的共聚焦激光扫描显微镜图像。半菁发射的红色荧光和dapi发射的绿色荧光在重合的情况下会显示出黄色荧光,图2证明了在用极低浓度(0.5μm)的半菁化合物c6,c3,c10孵育后的amp
r e.coli呈现红色荧光,表明半菁化合物可以成功地附着或插入膜中,在作为一种成像材料的同时提供杀死它们的可能性。黑暗组半菁发射的红色荧光主要聚集在细胞的边缘,而光照组中红色荧光逐渐向细胞内部分布,并与dapi的绿色荧光重叠显示出黄色荧光。由于半菁敏化氧气产生的ros在白光照射下会破坏细胞膜,导致病原菌死亡,从而使半菁更容易扩散到细胞中,导致染色范围的扩大。因此判断半菁具有区分活菌和死菌的能力,活菌染色后在细胞边缘出现红色的“光晕”图案,而死菌染色后整个细胞都显示红色荧光。
[0054]
二)半菁对s.aureus和c.albicans的成像实验
[0055]
半菁和s.aureus或c.albicans孵育前后的荧光显微镜图像如图3和图4所示,图3为不同浓度的三种半菁类衍生物(c3,c6,c10)和革兰氏阳性菌金黄色葡萄球菌(s.aureus)孵育前后的荧光显微镜图像,其中,左侧一列为孵育前,右侧一列为孵育后;图4为不同浓度的三种半菁类衍生物(c3,c6,c10)和真菌白色念珠菌(c.albicans)孵育前后的荧光显微镜图像,其中,左侧一列为孵育前,右侧一列为孵育后。由图3和图4可知,用半菁处理后s.aureus和c.albicans发射出明亮的荧光,并且它们的荧光强度随着c3、c6或c10浓度的增加而增强,表明半菁可以与金黄色葡萄球菌或白色念珠菌相互作用以达到标记的效果。从图中可以看出半菁可作为病原微生物的成像材料,能够快速高效的检测病原菌。
[0056]
实施例6
[0057]
在光照和黑暗条件下分别处理由半菁孵育过的病原微生物,进行光动力抗菌实验,探究半菁作为抗菌剂的效果,具体包括如下步骤:
[0058]
在100μl amp
r e.coli(od
600
=1.0)菌液中分别加入不同体积的半菁(0.5mm),并用灭菌的1
×
pbs将体积补充至500μl混合均匀,使半菁的终浓度为c3(0.5μm、1μm、2μm)、c6(0.5μm、1μm)、c10(0.5μm、5μm、6μm)。空白组不做任何给药处理。
[0059]
随后将每个浓度分别标号为光照组和避光组,置于37℃的培养箱中作用30min。取出后光照组样品在白光光源(65mw/cm2)下辐照10min,同时避光组样品用锡纸包好置于暗
处。
[0060]
最后将不同光照条件处理后的菌液用1
×
pbs稀释1
×
104倍,取100μl均匀涂布在lb培养基上,37℃下培养16-18h,记录菌落形成个数。
[0061]
根据如下公式计算病原菌的抑菌率(ir),
[0062]
ir=(c-c0)/c0×
100%
[0063]
c为实验组的克隆形成单位数,c0为对照组克隆形成单位数。
[0064]
对于s.aureus,唯一不同的是改变半菁终浓度为c3(5μm、10μm、15μm、90μm)、c6(5μm、10μm、15μm)和c10(5μm、10μm、15μm),使用的培养基为nb培养基。
[0065]
对于c.albicans,需要在100μl菌液(od
600
=1.5)中加入半菁使得终浓度为c3(10μm、30μm、60μm)、c6(10μm、30μm、60μm)、c10(3μm、6μm、10μm)。将不同光照条件处理后的菌液用1
×
pbs稀释2500倍,取100μl均匀涂布在ypd培养基上,在30℃下培养18-20h。
[0066]
通过将三种不同的代表性病原微生物(amp
r e.coli,s.aureus,c.albicans)在不同半菁浓度和不同光照情况(黑暗,65mw/cm2白光)下培养,研究半菁的光动力抗菌效果。结果如图5和图6,图5为不同浓度的半菁c3、c6、c10对不同病原微生物的抑菌率柱状图,图6为不同浓度的半菁c3、c6、c10对不同病原微生物的琼脂平板照片,从图中可以看出和黑暗组相比,光照组的抑菌率明显增长,证明了白光照射下产生的ros对病原菌高效的杀伤效果。在极低的浓度和白光照射的条件下,1.0μm c3或0.5μm c6可杀死98.6%或97.2%的amp
r e.coli,5μm的c10对大肠杆菌也可达到96%的抑菌率。
[0067]
金黄色葡萄球菌由于具有相对较厚的细胞壁(20-80nm)提高了抗菌的难度,但是半菁c6和c10对其仍具有较好的效果。当用白光照射10min后,无论是c6还是c10在5μm时都可杀灭98%以上的s.aureus,在10μm浓度时的抑菌率高达99.5%。对于白色念珠菌来说,表面较少的负电荷增加了与半菁结合的难度,此时c10的抗菌效果较为突出,光照下10μm抑菌率可达98.4%。因此,半菁类有机共轭小分子展示了广谱的抗菌活性以及高效的光动力抗菌能力。
[0068]
实施例7
[0069]
利用扫描电镜(sem)观察病原微生物在用半菁处理前后的形态变化,具体可包括如下步骤:
[0070]
取100μl菌液加入不同体积的半菁c3、c6、c10,后加入1
×
pbs(10mm,ph=7.4)补充总体积至500μl,并分为光照组和黑暗组。半菁终浓度如下表所示。
[0071][0072]
将样品置于霉菌培养箱(细菌37℃,真菌30℃)孵育30min。取出后避光组用锡纸包好置于暗处,同时光照组在白光(65mw/cm2)下照射10min。
[0073]
随后立即加入125μl含有0.5%戊二醛的1
×
pbs溶液于室温下固定30min,后7100rpm离心10min除去上清液,将菌沉淀重悬于500μl超纯水后再次7100rpm离心10min除去上清液。
[0074]
菌体重悬于500μl超纯水中,取5μl滴于干净的硅片上,风干(约20-30min)。待样品干燥后,立即将硅片浸入含有0.1%戊二醛的1
×
pbs溶液并于4℃冷藏2-4h。
[0075]
取出后用无菌水洗涤两次,并依次用40%、70%、90%、100%的乙醇对样品进行梯度脱水,每次持续6min。待样品自然干燥后进行喷金处理及sem表征实验。
[0076]
该实施例中通过观察病原微生物的形貌变化来进一步证明光动力抗菌的效果,同时也证明其破膜的抗菌机制。结果如图7所示,图7为不同浓度半菁在有无光照条件下病原菌的sem形貌图。从图中可以看出,对照组在扫描电镜中显示出清晰的边缘和光滑的外表面,证明此处使用的白光对微生物没有影响。而添加有半菁的实验组有不同程度的损伤,表现为凹陷和塌陷的表面,这种现象在暴露于白光10min后时更明显,从而可以说明局部产生活性氧的影响。扫描电镜表征产生的结果与抗菌实验基本一致,进一步证明了半菁具有在光照时敏化周围氧气产生ros从而使细菌灭活的能力。
[0077]
实施例8
[0078]
测定大肠杆菌和金黄色葡萄球菌中加入半菁前后的zeta电位,探究半菁和病原微生物的作用机制,具体可包括如下步骤:
[0079]
将病原菌和半菁按照实施例6的浓度孵育30min后取出,7100rpm离心3min,除去上清液。
[0080]
将得到的沉淀重悬于1ml超纯水中,置于冰上用于病原菌表面zeta电位的测量实验。
[0081]
空白组不做任何给药处理,和上述操作相同。
[0082]
细菌和真菌表面都带有不同量的负电荷且具有疏水结构,通过测量病原微生物和半菁孵育前后zeta电位的变化,判断带正电荷的半菁是否可以通过静电作用或疏水作用和表面带负电的病原微生物有效结合。结果参见图8,图8为病原菌经不同浓度的半菁处理前后的zeta电位。amp
r e.coli自身的电位为-43.5
±
0.7mv,其与半菁结合后表面电位无明显变化,初步判断疏水作用是主要因素。但是对于革兰氏阳性菌s.aureus,未经处理的ζ电势为-24.3
±
0.4mv,用不同浓度得半菁处理后ζ电位发生明显的正移并且移动的程度随着半菁浓度的增长而增加。证明了半菁类有机共轭分子可以同病原菌有效结合,且联合实施例7中sem表征共同证明其抗菌机理为通过破坏生物膜使细胞死亡。
[0083]
综上,本发明发现了一种有机共轭小分子-半菁类衍生物在生物医药领域的应用具有很大潜力,其制备简单,光电性质优异,大的斯托克斯位移和发射的红色荧光使其作为荧光成像剂具有广阔应用前景,不仅可以检测病原微生物,同时可鉴别活菌和死菌。此外,该类有机物还可以作为光敏剂在光照情况下敏化周围氧气产生大量ros从而达到光动力抗菌的效果,并且实验发现对于革兰氏阴性菌,革兰氏阳性菌及真菌都有高效的广谱抗菌效果。
[0084]
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

技术特征:
1.式(i)化合物作为荧光探针的应用:式(i)中,r1、r2独立地选自c1~c5烷基;x为卤素;n为1~20。2.式(i)化合物在制备检测大肠杆菌是否存活的试剂盒中的应用:式(i)中,r1、r2独立地选自c1~c5烷基;x为卤素;n为1~20。3.根据权利要求1或2所述的应用,其特征在于,x为br;n为1~10。4.根据权利要求3所述的应用,其特征在于,r1和r2为甲基,n为3、6或10。5.式(i)化合物在制备检测病原微生物试剂盒中的应用:式(i)中,r1、r2独立地选自c1~c5烷基;x为卤素;n为1~20。6.式(i)化合物作为光动力抗菌剂的应用:式(i)中,r1、r2独立地选自c1~c5烷基;x为卤素;n为1~20。7.根据权利要求5或6所述的应用,其特征在于,x为br;n为1~10。8.根据权利要求7所述的应用,其特征在于,r1和r2为甲基,n为3、6或10。9.根据权利要求5或6所述的应用,其特征在于,所述病原微生物或者所述光动力抗菌剂的目标病原微生物为革兰氏阴性菌、革兰氏阳性菌或真菌。10.根据权利要求9所述的应用,其特征在于,所述病原微生物为大肠杆菌、金黄色葡萄球菌或白色念珠菌。

技术总结
本发明提供了式(I)所示结构的化合物作为荧光探针、光动力杀菌剂以及在制备检测病原微生物试剂盒或检测大肠杆菌是否存活的试剂盒中的应用。实验结果表明,式(I)所示结构的化合物具有优异的敏化氧气产生ROS的能力;其能够成功附着或插入大肠杆菌膜中,作为成像材料的同时提供灭杀病原微生物的可能性,具备区分活菌和死菌的能力;其能够可以与金黄色葡萄球菌或白色念珠菌相互作用以达到标记的效果,作为检测病原微生物的荧光探针;其具有广谱的抗菌活性和高效的光动力抗菌能力。活性和高效的光动力抗菌能力。活性和高效的光动力抗菌能力。


技术研发人员:袁焕祥 李泽琳 高丽华
受保护的技术使用者:北京工商大学
技术研发日:2021.12.21
技术公布日:2022/3/8

最新回复(0)